If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+22x=8
We move all terms to the left:
x^2+22x-(8)=0
a = 1; b = 22; c = -8;
Δ = b2-4ac
Δ = 222-4·1·(-8)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{129}}{2*1}=\frac{-22-2\sqrt{129}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{129}}{2*1}=\frac{-22+2\sqrt{129}}{2} $
| 2+2(3x-4)=8x | | |-3r|=9 | | 69=1+2(4-5x) | | F(x)=-3+4 | | |3x|=9 | | 1.5(x+4)–3=4.5(x–2) | | 2x2−28x+98=0 | | −4=x/20−5 | | 9.34=x-2.7 | | 3(5b+5)+6=81 | | 6x-14=-2x+10 | | 8-8(7n-7)=176 | | 12x+1=3(4x+1)–2 | | 3(h+4)=18 | | 2(x-5)^2=-32 | | 124=4(1+5a) | | Y=-3/2x+8 | | 16-10=4q | | 2x+3-4x+7=5 | | 6w-8=4w+2 | | 1/4x+1/2=13 | | 7/12=3/x | | 2s+s=10 | | 9/8=g+(1/2) | | 13x=63 | | (2x-3)^2=0 | | X^2-0.6x+0.09=29.16 | | 7/6=x/8+5/8 | | -3x+12=-21+8x | | -2=-2x^2-3x | | 40+22j=26 | | 5x-15/2-1=14 |